Fertilizer Reports
Permanent URI for this collection
Browse
Browsing Fertilizer Reports by Author "Christian O. Dimkpa"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemEffect of Micronutrient Micnobit and Salt Fertilization on Lettuce(2016-01) Bindraban, Prem S.; Christian O. Dimkpa; Jongschaap, R.E.E.; Vos, C.H.; Van der Lee, M.K.; Van der Werf, A.K.; De Visser, W.; M. Blom-ZandstraPlants can absorb nano- and micro-size particles containing nutrients, opening the possibility for instantaneous uptake of nutrients supplied through roots or leaves. Here, we studied the uptake by lettuce (Lactuca sativa L.) of particulate nutrients from a micnobit (mixture of nanoparticles producing different nano and micro-scale sizes) formulation composed of ZnO, CuO, Fe3O4, MnO, and B2O3 used as fertilizers, in comparison to a similar mixture of their ionic equivalents from salts of Zn, Cu, Fe, Mn and boric acid at levels optimal for growth, yield, metabolism and nutritional quality attributes in food crops. In the case of Zn, the effect of a double dose compared to the basic fertilization was also studied to evaluate the possibility of increasing Zn levels in vegetable crops, as a potential strategy for alleviating Zn deficiency in human/animal diets. A greenhouse pot experiment was conducted using a sandy soil (pH 7.1) poor in most nutrients, including micronutrients but rich in calcium, and with very low content of organic matter to study the effects of micronutrient fertilization on lettuce. For application of the micronutrients, four fertilizer treatments were used: i) traditional (ionic) fertilizer; ii) micnobit particle coated seeds, iii) micnobit foliar application (spraying treatment), and iv) micnobit soil application. The lettuce plants were grown for 73 days and harvested periodically to study fresh and dry weight production and leaf greenness by SPAD measurements over time. Shoot or root materials from the final harvest was used to determine contents of micronutriënts, leaf chlorophyll and biomolecules (vitamins, flavonoids, phenolics, and antioxidants). Values from SPAD measurements significantly differed between the harvests and showed an increase with time up to 59 days after sowing. Differences between the treatments were less distinct, but showed the highest values between the Priming and Control treatments. Chlorophyll contents did not significantly differ between the treatments. The lettuce plants showed S-shaped growth under all treatments, although the foliar applications, both with micnobits and ions, caused necrosis at the leaf edges in the long run. Also, Foliar application with micnobits caused deposition and showed black spots on the leaves that could not be removed by rinsing methods described in the literature. Growth analysis, i.e. production of fresh weight, dry weight and root-total weight ratio over time, showed that for both shoot and root, the Control treatment resulted in the best growth. Priming of seeds resulted in similar growth as at the Control treatment. Addition of micronutrients to soil or leaves, both applied as ions or as micnobits, even decreased fresh weight and dry weight production of lettuce. Moreover, the shoots and roots of plants in the Control treatment also showed accumulation of micronutrients, while no micronutrients had been applied. No significant differences were found between the Foliar application and Soil treatments. Moreover, even no significant differences were found between application of micnobits or application of ions. Thus, we concluded that the soil - although very poor with a low content of micronutrients - was not lacking in the tested nutrients and the low availability of micronutrients in the soil was already sufficient for an optimal growth. The determination of micronutrient contents showed that ions and micnobits were taken up by both roots (Soil treatments) and by leaves (Foliar application). However, the amounts of micronutrients found in the leaves appeared to be higher than those described in literature for plant shoots with adequate growth. The contents of the micronutrients other than Fe varied between the treatments in both leaves and roots, suggesting excessive uptake that could have inhibited biomass production in these treatments. Foliar application with ions resulted in a higher micronutrient content than foliar application with micnobits. The fact that all treatments, whether applied to the leaves or to the soil or via priming, resulted in an accumulation of micronutrients in both shoots and roots, proved that the micronutrients had been transferred through the plants from the shoot to the roots (Foliar application) and from the roots to the shoot (Soil application). However, it could not be determined in which form, i.e. whether as ions, micnobits or metabolically processed, the micronutrients were transported through the plant. The presence of micnobits could only be detected for Fe2O3, CuO and MnO3. However, due to a high noise level in the ICP-MS sample analyses, it was not possible to quantify the content of the elements properly. Vitamin C content in leaves was highest in plants from the Control treatment, but not significant different from other treatments. No clear distinction could be made between the Soil and Foliar application, nor between treatments with ions or with micnobits. LCMS profiles of the lettuce leaves showed a relative intensity of 257 compounds present in the leaves. In the Soil and Foliar application, 80 out of the 237 metabolites (25%) had been changed significantly, although not annotated, from which 66 of them revealed a more than 2-fold difference. We conclude that this study with composite nanoparticles could not endorse the hypothesis that micnobits will be taken up more efficiently than ions, or that they will enhance growth in lettuce as reported in the literature for other crops. Furthermore, this study also clearly demonstrates the need for plant tissue testing as an important yardstick for supporting soil-based nutrient testing, prior to fertilizer recommendations.
- ItemNanoscale Micronutrients Suppress Disease(2015-02) Christian O. Dimkpa; Alia Servin; Wade H. Elmer; Arnab Mukherjee; Helmi Hamdi; Jason C. White; Roberto de la Torre-RocheNanotechnology has experienced exponential growth in the past decade, revolutionizing multiple industries and showing immense market potential. With a projected market value of $3 trillion by 2020, nanotechnology has impacted diverse sectors, including healthcare, electronics, cosmetics, and agriculture. Nanotechnology in agriculture holds great promise for improving food production, food security, and food safety worldwide. This review provides an overview of the applications of nanotechnology in agriculture, focusing on nanofertilizers, nanopesticides, and nanosensors for soil quality and plant health monitoring. Using nanomaterials in agriculture aims to enhance the efficiency and sustainability of agricultural practices by reducing input requirements and minimizing waste. Patent applications for nanopesticides alone exceeded 3,000 in 2011. Various nanomaterial-based products have been developed, as listed in Table 1. These approaches aim to improve crop yield by suppressing crop diseases and potentially providing essential micronutrients necessary for host defense. Nanoscale amendments, including metals, metal oxides, and carbon-based materials, have shown potential for disease suppression and yield enhancement. Moreover, plant nutrition plays a crucial role in disease resistance, with micronutrients activating defense enzymes and maintaining plant health. However, challenges exist in ensuring sufficient nutrient availability in slightly acidic to neutral soils and improving the translocation of micronutrients within plants. Elements such as aluminium (Al) and silicon (Si) have shown potential for disease control and activating defense mechanisms, but their limited availability and translocation within plants limit their efficacy. Nanomaterials offer new possibilities by enhancing nutrient availability and translocation. Nanoscale micronutrient formulations can provide targeted and effective nutrition-based manipulation of host resistance, enhancing disease suppression and crop productivity. The synthesis of nanomaterials is a critical aspect of nanotechnology. Nanomaterials exhibit unique properties influenced by their morphology, such as size, shape, and crystalline phase. Various chemical and physical methods have been developed for their synthesis, with titanium dioxide (TiO2) being the most produced nanomaterial. Advancements in nanomaterial synthesis continue to drive the field forward, offering new opportunities for tailored applications in agriculture.
- ItemPlant Exudates for Nutrient Uptake(2015-03) D.H. Keuskamp; Richard Kimber; Bindraban, Prem S.; Christian O. Dimkpa; W.D.C. SchenkeveldPlants require nutrients for unimpaired growth. Many plant strategies for acquiring nutrients from the soil involve root exudates that facilitate the detachment from the soil solid phase and the transport to the plant root. In this report, root exudation related to acquisition of nutrients other than nitrogen (N) and phosphate (P) has been considered. In this context, three important classes of root exudates can be identified: low molecular weight organic acids (LMWOA), phytosiderophores (PS) and reductants. The mechanisms by which these exudates can enhance bioavailability include ligand exchange, ligand-promoted dissolution, mineral dissolution by lowering solution saturation state through complexation, co-exudation of protons and chemical reduction. These mechanisms are not specific to a certain class of exudates, and a single class of exudates can be involved in multiple mechanisms. The efficiency of exudates in mobilizing nutrients from soil depends on the chemical affinity of the exudate ligand for the targeted nutrient element (the denticity of the exudate ligand plays an important role in this respect), the characteristics of the soil, and the susceptibility of the exudate to microbial degradation, adsorption and binding of non-targeted elements. A meta-analysis of available literature data on the response of root exudation levels by different crop species to the availability of specific nutrients was carried out. The relative change in root exudation level as a result of a decrease in the availability of specific nutrients was investigated. The responsiveness and the magnitude of these responses seem to be strongly plant species, cultivar and nutrient specific. Available data on exudation proved biased towards certain nutrients, specifically iron (Fe) and zinc (Zn), and comparisons between studies were often complicated due to differences in experimental approach. Furthermore, at present there are very few published data on exudation under actual rhizosphere conditions. Despite the shortage of data, the potential for utilizing root exudates for making better use of soil nutrient reserves and improving nutrient acquisition, e.g., in intercropping systems, looks promising and needs to be further explored.
- ItemThe Application of Nanotechnology for Micronutrients in Soil-Plant Systems(2015-03) Bindraban, Prem S. ; C.M. Monreal; M. DeRosa; S.C. Mallubhotla; Christian O. DimkpaMicronutrients (MNs) are important to world agriculture and human health. Over 3 billion people across the world suffer from micronutrient deficiencies. Zinc (Zn), iron (Fe), manganese (Mn) and copper (Cu) have become yieldlimiting factors and are partly responsible for low food nutrition. Although crops use low amounts of MNs (<2.4 kg/ha), about half of the cultivated world’s soils are deficient in plant bioavailable MNs, due to their slow replenishment from the weathering of soil minerals, soil cultivation for thousands of years and insufficient crop fertilization. Relevant MN deficiencies occur more frequently in neutral to alkaline soils, under anaerobic conditions and in arid or semi-arid regions. The MN use efficiency (MUE) of most commercial fertilizers added to soils or foliage is 2.5% to 5% of applied, due to their rapid stabilization by soil components, low leaf penetration and low mobility in plants. In soil-plant systems, fertilizer-MNs interact with macronutrients resulting in synergistic, antagonistic or neutral response affecting yield and food quality. Thus far, conventional and newer fertilizer technologies and products are unable to synchronize the MN release from fertilizer according to crop demand during the growing season, resulting in low MUE. New efforts to improve crop yield, food nutrition and fertilizer-MUE involve the use of micro- and nanoencapsulation, nanomaterials (NMs), nanodevices and nanoparticles (NPs) of Zn, Fe, Mn and Cu oxides. Fertilizer products appear to increase MUE as follows: soluble salts < chelates < microcapsules ≤ nanocapsules = nanoparticles. Many of the effects of the new fertilizer materials on crop yield and quality, human health and environmental risks remain largely unknown. Nanobiotechnology will occupy a prominent place in transforming agricultural systems and food production worldwide in the coming years. This report proposes that the development of a MN intelligent nanofertilizer (INF) delivery platform may result in significant increases of MUE and food quality by enabling the synchronization of MN release from fertilizers according to crop demand. The novel MN-INF product development needs adequate financial support and a multidisciplinary team of scientists.