Zinc Oxide Nanoparticles Alleviate Drought-Induced Alterations in Sorghum Performance, Nutrient Acquisition, and Grain Fortification

AuthorChristian O. Dimkpa
AuthorUpendra Singh
AuthorBindraban, Prem S.
AuthorWade H. Elmer
AuthorJorge L. Gardea-Torresdey
AuthorJason C. White
Date of acession2023-09-01T11:29:52Z
Date of availability2023-09-01T11:29:52Z
Date of issue2019
AbstractDrought is a major environmental event affecting crop productivity and nutritional quality, and potentially, human nutrition. This study evaluated drought effects on performance and nutrient acquisition and distribution in sorghum; and whether ZnO nanoparticles (ZnO-NPs) might alleviate such effects. Soil was amended with ZnO-NPs at 1, 3, and 5 mg Zn/kg, and drought was imposed 4 weeks after seed germination by maintaining the soil at 40% of field moisture capacity. Flag leaf and grain head emergence were delayed 6-17 days by drought, but the delays were reduced to 4-5 days by ZnO-NPs. Drought significantly (p < 0.05) reduced (76%) grain yield; however, ZnO-NP amendment under drought improved grain (22-183%) yield. Drought inhibited grain nitrogen (N) translocation (57%) and total (root, shoot and grain) N acquisition (22%). However, ZnO-NPs (5 mg/kg) improved (84%) grain N translocation relative to the drought control and restored total N levels to the non-drought condition. Shoot uptake of phosphorus (P) was promoted (39%) by drought, while grain P translocation was inhibited (63%); however, ZnO NPs lowered total P acquisition under drought by 11-23%. Drought impeded shoot uptake (45%), grain translocation (71%) and total acquisition (41%) of potassium (K). ZnO-NP amendment (5 38 mg/kg) to drought-affected plants improved total K acquisition (16-30%) and grain K (123%), relative to the drought control. Drought lowered (32%) average grain Zn concentration; however, ZnO-NP amendments improved (94%) grain Zn under drought. This study represents the first evidence of mitigation of drought stress in full-term plants solely by exposure to ZnO-NPs in soil. The ability of ZnO-NPs to accelerate plant development, promote yield, fortify edible grains with critically essential nutrients such as Zn, and improve N acquisition under drought stress has strong implications for increasing cropping systems resilience, sustaining human/animal food/feed and nutrition security, and reducing nutrient losses and environmental pollution associated with N fertilizers.
CitationDimkpa, C.O., U. Singh, P.S. Bindraban, W.H. Elmer, J.L. Gardea-Torresdey, and J.C. White. 2019. “Zinc Oxide Nanoparticles Alleviate Drought-Induced Alterations in Sorghum Performance, Nutrient Acquisition, and Grain Fortification,” Science of the Total Environment 688:926-934. https://doi.org/10.1016/j.scitotenv.2019.06.392
URLhttps://hub.ifdc.org/handle/20.500.14297/2401
Languageen_US
SubjectFood security
SubjectNutrient use efficiency
SubjectDrought stress
TitleZinc Oxide Nanoparticles Alleviate Drought-Induced Alterations in Sorghum Performance, Nutrient Acquisition, and Grain Fortification
TypeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0048969719329651-am (1).pdf
Size:
1003.89 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description:
Collections