Drought Response of Dry-seeded Rice to Water Stress Timing and N-Fertilizer Rates and Sources

Abstract
Dry seeding has been identified as an option for increasing cropping intensity and productivity in rainfed ricelands. Managing drought and nutrients are important for increasing yield, but the interactive effects of drought and nutrients on dry-seeded rice (Oryza sativa L.) growth have not been systematically investigated. Two experiments were carried out in 1994 and 1995 to analyze the effects of N fertilizer rate and the use of controlled-release fertilizers (CRFs) on the growth and yield of dry-seeded rice grown on a silty clay loam (Typic Tropaquept) subjected to water stress at different crop stages. In both years, in the main plots, rice was subjected to water stress at four different stages of development. The subplots were designed to compare the effect of the application of prilled urea and CRFs Osmocote (1994) and Polyon 12 (1995). Four N rates (0, 60, 120 and 180 kg ha−1 ) were imposed on rice in the sub-subplots (1994 only). The N fertilizer source did not affect any of the measured parameters. Irrespective of the N the fertilizer rates, grain yield and total dry matter accumulation of rice plants stressed at the flowering stage (WSFL, 1994) and panicle initiation stage (WSPI, 1995) were significantly lower than those of well-watered plants and plants stressed at the vegetative stage. Water stress during the grain-filling stage reduced the grain yield in 1995 when the stress was severe. Application of N fertilizer increased the yield compared with zero N in all water treatments, except for the WSFL plants whose yield did not change. The WSFL treatment also significantly reduced agronomic N-use efficiency.
Description
Keywords
Yields, Water stress, Nutrients, Fertilizers
Citation
Castillo, Erneesto Guttierez, To Phuc Tuong, Upendra Singh, Kazuyuki Inubushi and Jaime Padilla. 2006. “Drought Response of Dry-Seeded Rice to Water Stress Timing and N-Fertilizer Rates and Sources,” Soil Science and Plant Nutrition 52:496-508
Collections